Skip to Content

Keep An Eye On District Heating

In this episode, Dan Holohan shares how district heating was born, why it’s getting bigger all over the world, and what this means for hydronics.


Episode Transcript

Birdsill Holly (and isn't that a delightful name?) was born in 1820 in upstate New York. He liked to invent things. In 1851, he was living in Lockport, NY, which is very near Niagara Falls. He built a large steam boiler and then ran pipes under the streets of Lockport to deliver steam heat, which was brand-new at the time, to his neighbors. And that's how district heating was born.

Some folks from Denver showed up in 1880 to take a peek at what Birdsill had built. They returned to Colorado and constructed a much larger district-steam system in their city, which was only 22 years old. It’s still there.

New York City, not to be outdone by Denver, that young, Western upstart of a city, followed two years later and that steam system continues to roar, providing steam to the Empire State Building, Rockefeller Center, and other iconic buildings. It is the largest district-steam system in the world.

And Birdsill Holly did something else that was pretty significant in American history. He thought about those buried steam pipes and how he could do a similar thing with buried water pipes. And no, I'm not talking about heating buildings with hot water. I'm talking about putting out fires.

Yep, Birdsill also invented the fire hydrant. And isn't that nice?

That was in 1863. He thought it was such a fine idea, one that could really make big cities safer. He took a train to Chicago and tried to convince the politicians that they really needed his newfangled method of fighting fires, but they weren't buying it, so Birdsill Holly got back on the train and went home.

Eight years later, Mrs. O'Leary's cow kicked over the lantern that started the Great Chicago Fire, which destroyed 3.3 square miles and left more than 100,000 people homeless.

So there.

On July 8, 2007, water hammer hit an elbow in a steam main buried under the intersection of Lexington Avenue and 41st Street in midtown-Manhattan. The resulting explosion put debris on top of the Chrysler Building.

It turns out that two clogged steam traps got together with a heavy rainfall that flowed down a manhole that morning and soaked the outside of the steam main. The cold water on the outside of the pipe caused the steam on the inside of the pipe to quickly condense, and since those two steam traps were clogged, the big slug of condensate pretended it was a cannon ball. It traveled a few blocks and destroyed that big, buried elbow, blowing up the entire intersection. It cost ConEd $37 million to make that one right.

And that's a very good reason to keep an eye on district heating, especially if it's high-pressure steam. Maintenance matters.

A few years ago, it looked like the price of fuel oil was going to just keep going up. Fracking had lowered the price of natural gas, and many Americans in the Northeast, where fuel oil had long been popular, were switching to gas.

The city fathers in the capital city of Montpelier, Vermont were losing their shirts on fuel oil, so they looked for a solution. Rather than switch to natural gas in all their boilers, they decided a biomass-fired, district-hot-water system was the best choice for their downtown. After all, this was Vermont, a state not lacking in trees.

I followed this whole process as it played out in the news for a few years. It took a while to get all the legal stuff in order. Then they began running the pipes under the city streets and contracting for the construction of the new biomass-boiler plant. Excitement built and more and more Vermonters paid attention to this new system and the savings it promised. Imagine heating the whole downtown with what's laying on the ground right over there in the woods.

On the day they lit off the new system, all the politicians showed up to have their photos taken. They made speeches and cut the ribbon and everyone cheered.

And then the price of fuel oil plummeted, making their brand-new biomass plant way more expensive to operate than anyone had thought.

Go figure.

But keep an eye on district heating anyway. It’s getting bigger all over the world, and it brings with it great news for hydronics.

In a suburb of Paris, they're digging down about 2,500 feet to get to water that's a constant 83° F. They'll use this, summer and winter, as their geothermal source to heat and provide hot water for 1,500 new homes. They'll also be heating all the shops in town, as well as the neighborhood swimming pool. And they're doing all of this with pumps and heat exchangers, and other hydronic goodies. And they'll also be pumping the used water back into the ground, where it can return to its original temperature and serve yet again. And again. And again.

On a smaller scale, and in downtown Paris, they're capturing the body heat of all the people passing through the Metro stop by the Pompidou Museum, as well as the heat from the trains passing by underground. They're using an air-to-water heat exchanger to capture that heat, which then flows to the radiators in 17 social-housing apartments next to the Metro stop.

The Swedes have been doing a similar thing within Stockholm's train station since 2010. They capture the body heat of the quarter-million people who pass through each day, and use that heat (again, though an air-to-water heat exchanger) to warm an office building down the block.

And none of this is really new. The hot bodies alone at the Mall of America in Bloomington, Minnesota have been heating that place since 1992. Who needs a heating system when all those people are moving around and giving up heat?

And I know, that's not exactly district heating, but it does make me smile.

North Carolina is home to a one-million-square-foot business park that runs on a district-hot-water system. The heat comes from 640 solar-thermal collectors that grab Btu every day. During the summer, they store that heat in boreholes and bring it back up when it gets chilly. The Earth is a terrific heat sink.

Another builder is doing the same thing in a 52-house subdivision in Alberta, Canada. Solar panels, boreholes, and lots of hydronics. See the future.

In the UK right now, about 210,000 houses are connected to hot-water, district-heating systems. The government believes that by 2030, eight million Britons will be using district heating. The Paris agreement on climate change also plays into this. The UK has vowed to do away with all gas-fired boilers and gas cooking stoves. That changes everything, and I suspect once they get over the initial alarm, homeowners will warm to the idea of district heating because instead of having to buy and maintain a boiler, they'll have these relatively simple metal boxes that contain a heat exchanger, circulator, a bit of pipe, valves, fittings, gauges, and a Btu meter. You know, hydronic stuff.

And the other attraction over there right now is that the district-heating market, unlike the electricity market, is unregulated. The government is letting the heating providers set the price, which makes it very attractive to investors who are thinking long term.

Copenhagen's district-heating system is one of the world's largest hot-water systems. This one burns garbage to produce electricity, and uses the waste heat to provide heat and hot water to 98% of the buildings in that beautiful Danish city.

And you would think that the building that houses the incinerator would be ugly, right? It's not. This place is absolutely whimsical. They built it so that people can ski on artificial snow from its top, around the whole building, and down onto the street. It also has a special smokestack that blows steam rings into the sky whenever they save a certain amount of carbon. Danes are fun people.

To me, the most interesting thing about district heating is the way it's branching out and moving away from coal, oil and natural gas. I'm seeing more and more of these systems running on biomass, garbage, body heat, sunlight, the constant temperature of large bodies of water, the water in abandoned flooded mines, or in the case of Iceland, the lava that's not far underground. It's all fascinating, and it's all about hydronics on a very large scale. It's worth keeping an eye on.

And I also think Birdsill Holly would have approved.

I hope you enjoyed that story. And if you did, please share it with your friends. And please subscribe to this podcast if you haven’t already. I have many more Dead Men Tales to share with you. Thanks for listening. It means a lot.

Leave a comment

Related Posts

The Legacy of the Dead Men

In this episode, Dan Holohan reflects on the Dead Men who came before us and the legacy they left behind. Episode Transcript My earliest memory of school goes like this: ...

Published on 12/27/2022 4:45 AM
Pivotal Advice

In this episode, Dan Holohan shares the advice that changed his life. Episode Transcript Advice sometimes comes unsolicited (like now) and other times it comes after you’...

Published on 12/20/2022 4:45 AM
Pipe Stories

In this episode, Dan Holohan shares the tale of how nominal pipe sizes came to be, as well as some comical work stories. Episode Transcript I called the plumber because t...

Published on 12/13/2022 4:45 AM