Published: August 13, 2015 - by Ray Wohlfarth

Categories: Commercial Heating

Ray Wohlfarth Pic

One of the choices to be made when tasked with a boiler replacement project is whether to use a condensing or standard efficiency boiler. There are several considerations that should go into the decision.

Existing System

The first consideration is the type of mechanical system in the building. While condensing boilers are ideal for snow melt, in-floor radiant and water source heat pump systems, there are some applications where a condensing boiler simply does not condense.  It is like opening a pistachio nut and finding it empty.  If the water temperature inside the boiler is greater than 1400F, the condensing boiler will not condense. 1400F is that benchmark temperature that separates the two boiler types. Standard efficiency boilers will condense when the water temperature is at or below  1400F. Operation below 1400F in a standard efficiency boiler will result in damage to the boiler flue, and chimney. Condensing boilers will stop condensing when the water is above 1400F.  They actually lose efficiency the warmer the water is for the system.

On the boiler brochure, right after the huge font proclaiming the efficiency of the uber efficient boiler is usually an asterisk. When you find the asterisk later in the brochure, the sentence following the asterisk will typically state that the boiler will reach those unbelievable efficiencies with 60 degree water. Well, if you have a building filled with cast iron radiators, 600F supply water will not raise the building temperature one degree on a 10 degree day.

In older applications, the original designer typically specified a system that would heat the building using 1800 supply water at the design outside air temperature. At that supply temperature, the condensing boiler will not be condensing. It will be in the 84-88% efficiency range.  This is slightly more than the mid efficiency boiler range.

In Europe, where condensing boilers are more common, the designers oversize the heat emitters to allow lower water temperature. Let us assume that our existing heating system was designed using 1800 F water with fin tube radiation. We now want to use 1200 F water to heat our building.  To do so, we would have to have almost three times as much radiation as we originally had. We could have a wall filled with copper tubes and fins. In Europe, they are proud of their radiators and proudly display them. Over here, we hide them.

Another factor to consider is when the condensing boiler is used to heat either the domestic hot water or a swimming pool via a water to water heat exchanger.  Commercial buildings require 1400 F water for the domestic water loop. If you require 1400F water on the outlet of the heat exchanger, the water temperature has to be at least 10-200F higher in the boiler.  That would make it 1500-1600F. At that temperature, the condensing boiler is not condensing.

Estimated Life  

Condensing boilers are relatively new in our country and life expectancies are not well documented or published. According to the Chartered Institution of Building Service Engineers (CIBSE), the life expectancy is 15 years for a condensing boiler. According to UK Energy Saving, they estimate it a bit less at between 10-15 years. This is about half the life expectancy of a standard boiler. The project would have to generate huge savings to justify paying for two condensing boiler replacement projects in the life of one standard boiler project.  

Installation Costs

When comparing a standard efficiency boiler with a condensing boiler, the condensing boiler will typically cost 15-20% more than a standard efficiency boiler.

The installation costs are usually higher for condensing boilers as well. The condensing boiler will usually require a new flue to vent the products of combustion. In addition, the flues cannot be combined as they are pressurized and could spill flue gases into the idle boilers. In some instances, the flues have to be stainless steel. The other consideration is sidewall venting the new boilers. It is very difficult to meet the International Mechanical Code when venting several boilers through a wall where there are windows or air inlets close.

Maintenance

The condensing boilers require more maintenance than the standard boilers. The acidic conditions inside the condensing boilers cause it to require cleaning much more often than a standard boiler. This has to be factored in to the life cycle costing.

The parts costs tend to be higher for a condensing boiler than a standard boiler as they are proprietary and only available from the manufacturer.

Hybrid

What if you were able to have a heating system with the efficiency of a condensing system while having the longevity of a standard boiler system?

A hybrid system does exactly that. This heating system will combine a condensing boiler with a standard efficiency boiler. When the system water temperature is below 1400F, the condensing boiler is the lead boiler and the standard one is the lag or back-up boiler. When the water temperature is above 1400F, the standard boiler is the lead boiler and the condensing boiler is the lag boiler.

There are several advantages to this, including lower fuel costs, reduced installation costs,  reduced maintenance costs, and longer life.

The first benefit when using condensing boilers in the proper application is that savings of 25-30% are common.

The second benefit is reduced installation costs. In a hybrid system, the new standard efficiency boiler should be able to reuse the existing stack or chimney. In addition, the standard boiler will probably not require combustion air vented from the outside like condensing boilers.

Another benefit is that the maintenance will be less if half the heating plant is standard efficiency boilers, which have lower maintenance costs.

The last benefit is longer life. If the condensing boiler lasts 15 years as stated above and the standard boiler lasts 30 years, the condensing boiler’s life should be extended when using it as the lag boiler for almost half the winter.  

Want to learn more? Check out my books, Lessons Learned in a Boiler RoomLessons Learned: Connecting New Boilers to Old PipesLessons Learned: Servicing Boilers, and Lessons Learned: Brewing with Steam.